
1.  Introduction
By absorbing and sequestering carbon dioxide from the atmosphere, the global oceans play a critical role in 
modulating climate change. The ocean has absorbed 37% of fossil carbon emissions since the start of the indus-
trial age (Friedlingstein et al., 2022). Quantifying the redistribution of carbon emissions in the land biosphere, 
ocean and atmospheric reservoirs supports climate policy (Peters et al., 2017). In order to estimate air-sea fluxes 
of carbon dioxide, the driver of these fluxes, the partial pressure of carbon dioxide in the surface waters (pCO2) 
must be estimated.

Global ocean biogeochemical models (GOBMs) explicitly simulate the physics, biology and chemistry of the 
ocean carbonate system based on equations that represent the physical and biogeochemical processes. Forced 
with winds and surface energy fluxes from observations for recent decades, the models estimate the state of 
the ocean physics and biogeochemistry for the same decades. Output from these models include a vast array of 
variables, including surface ocean pCO2 and air-sea CO2 flux. It has long been believed that GOBMs underrepre-
sent the magnitude of interannual variability of the ocean carbon sink (DeVries et al., 2019; Gruber et al., 2019; 
Landschützer et al., 2015; Le Quéré et al., 2007), though the mechanisms of this proposed underrepresentation 
have not been identified. More recently, the community has paid greater attention to the significant seasonal 
biases in GOBMs (Hauck et al., 2020; Mongwe et al., 2018).

Observation-based products utilize sparse observations of pCO2 from the Surface Ocean CO2 ATlas (SOCAT) 
(Bakker et al., 2016), and train a machine learning algorithm to relate these data to full-coverage observations of 
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Plain Language Summary  The ocean removes carbon dioxide (CO2) from the atmosphere and 
reduces climate change caused by humans. The magnitude of this removal can be estimated using computer 
models of ocean physics, chemistry, and biology, as well as statistical extrapolations of observations. The 
observational record is too sparse to directly reconstruct air-sea fluxes prior to 1982, but by combining models 
and a statistical approach, we make an estimate for 1959-present that is substantially informed by observations. 
The LDEO-Hybrid Physics Data product (LDEO-HPD) product for air-sea CO2 exchange includes two periods, 
with the first previously published for 1982–2018 and extended here to end in 2020, and the second being this 
extension back in time. For 1959–1981, LDEO-HPD corrects models using the monthly average of data-based 
corrections derived from the observed period, a choice justified by our finding that these monthly means are the 
largest component of the needed corrections during the observed period. The LDEO-HPD product agrees much 
better with independent observations than the models alone, and can be used to understand what controls year 
to year changes in the ocean carbon sink.
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associated variables, such that pCO2 can be estimated at all points in space and time. Although these algorithms 
often do not explicitly include the known physics of the ocean carbonate system, the results do compare well to 
independent observations of pCO2 (Bennington et al., 2022; Denvil-Sommer et al., 2019; Gregor et al., 2019; 
Landschützer et  al.,  2014). The mixed layer model of Rödenbeck et  al.  (2013,  2022) is another approach to 
creating an observation-based product. It combines statistical fits to data and explicit representations of physical 
processes.

Due to the sparsity of pCO2 data, observation-based products have been limited to the period of in situ observa-
tions that started to become more numerous in the 1980s. For the period of 1959–1990, eight GOBMs were used 
to quantify the historical air-sea CO2 flux in the Global Carbon Budget 2021 (Friedlingstein et al., 2022). For 
1990–2020, the average of of eight GOBMs and seven data products was used as the basis for this estimate. In all 
prior Global Carbon Budget releases, for example, Friedlingstein et al. (2020), only the average of GOBMs were 
used to estimate the ocean carbon sink.

To directly incorporate the physical knowledge contained within GOBMs into an observation-based prod-
uct, Gloege et al.  (2022) utilized the machine-learning algorithm XGBoost (Chen & Guestrin, 2016) to learn 
model-observation misfits of GOBM simulated surface ocean pCO2. The resulting data product (LDEO-HPD) 
showed an improved fit compared to the independent data over other data products. The resulting historical 
reconstruction of air-sea CO2 fluxes from the extended LDEO-HPD is within the range of other data products, 
and in agreement with 2010–2020 mean flux estimates from the Global Carbon Budget 2021 (Friedlingstein 
et al., 2022).

LDEO-HPD estimated air-sea fluxes beginning in 1982. Here, we extend LDEO-HPD back in time by applying 
the climatology of 2000–2020 estimated GOBM-observation misfits to the GOBMs for 1959–1981. As discussed 
below, this approach is supported by the fact that much of the skill in LDEO-HPD against independent modern 
observations is due to the climatological correction. This paper is organized as follows. We present the methods 
and resulting estimated air-sea CO2 fluxes for 1959–2020. We then briefly examine the resulting estimated flux 
variability in four basins and globally.

2.  Methods
The LDEO-HPD data product (Gloege et al., 2022) utilizes the nearly global coverage of satellite sea surface 
temperature (SST) (Reynolds et al., 2002), sea surface salinity (SSS) (Good et al., 2013), chlorophyll-a (Maritorena 
et  al.,  2010), geographic location, time of year, the climatology of mixed layer depth (de Boyer Montégut 
et al., 2004), and the machine learning algorithm XGBoost (Chen & Guestrin, 2016) to create a nonlinear func-
tion between observations and the model-data misfit of surface ocean pCO2. Misfits to observed ocean surface 
pCO2 of the SOCATv2021 database (Bakker et al., 2016; Sabine et al., 2013) are calculated for each of eight (8) 
GOBMs (Friedlingstein et al., 2022) (Table 1) separately. The machine learning algorithm is trained to learn 
the relationship between driver data (SSS, SST, Chl-a, location, MLD, time of year) and observed pCO2 misfit 
(SOCAT-GOBM) where SOCAT data are available. This algorithm is used to estimate the model-data misfit from 
the full-coverage driver data at all times and locations. The estimated model-specific misfits are full-coverage, 
time-varying estimates of how the model pCO2 field should be modified to bring model pCO2 into agreement 
with the real world. In other machine learning applications for this problem, statistics are used to directly estimate 
real-world pCO2 at all points in space and time. Our approach is to estimate how each model's pCO2 output needs 
to be adjusted to better represent reality. To clarify that our final step is to correct the models, we also use the term 
“corrections” for the model-data misfits.

As shown in the Results, interannual variability of model-data misfits is generally small compared to the clima-
tological mean correction. Thus, we extend LDEO-HPD to the beginning of the model simulations at 1959 using 
the monthly climatology of the 2000–2020 model-data misfit as the correction. For 1982–2020, the monthly and 
interannually varying correction is used (Gloege et al., 2022). This misfit is separately calculated for, and applied 
as a correction to, each of eight GOBMs.

Each of the GOBMs are independently adjusted with its unique correction field that varies at 1° latitude by 1° 
longitude and monthly for 1982–2020, or climatologically for 1959–1981. The final pCO2 reconstruction is the 
ensemble mean of the eight corrected GOBM pCO2 estimates (modeled pCO2 + reconstructed correction).
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The complete description of the LDEO-HPD method and the resulting data product can be found in Gloege 
et al. (2022).

2.1.  CO2 Flux Calculations

In our analysis of model-data misfits and of reconstruction skill against independent data, we consider pCO2. To 
assess the global ocean carbon sink associated with these pCO2 estimates, air-sea CO2 exchange must be calcu-
lated. We use the same gas transfer velocity, solubility, winds, and ice for LDEO-HPD, other observation-based 
products, and the GOBMs so that differences in these calculations do not factor into the resulting compari-
son (Fay et  al.,  2021). EN4.2.2 salinity (Good et  al.,  2013); ERA5 winds, sea level pressure, and SST (Bell 
et al., 2019, 2020); the wind scaling factor for ERA5 (Gregor & Fay, 2021); and Hadley sea ice fractional cover-
age (Rayner et al., 2003) are used. Unreconstructed coastal areas in data products, which vary in area across the 
products,  are filled with the scaled coastal pCO2 climatology (Landschützer et al., 2020), also following Fay 
et al. (2021).

Air-sea CO2 flux (FCO2) is estimated using a bulk parameterization (Equation 1),

𝐹𝐹𝐹𝐹𝐹𝐹2 = 𝐾𝐾𝑤𝑤 ⋅𝐾𝐾0 ⋅ (1 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) ⋅
(

𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

2
− 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

2

)

� (1)

Where Kw is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr 14C bomb flux esti-
mate according to Wanninkhof (1992) and Sweeney et al. (2007) as in Gregor and Fay (2021); K0 is the solubility 
calculated using salinity and SST; 𝐴𝐴 pCO𝑎𝑎𝑎𝑎𝑎𝑎

2
 is the water vapor corrected atmospheric partial pressure of CO2 from 

CarboScope (Rödenbeck, 2005); and 𝐴𝐴 pCO𝑠𝑠𝑠𝑠𝑠𝑠

2
 is the surface ocean pCO2.

Data products which incorporate observations of surface ocean pCO2 include both natural and anthropogenic 
carbon in the resulting pCO2 and CO2 flux product. This is the net CO2 flux (Fnet = Fnatural + Fant). Global ocean 
biogeochemical models exclude the natural outgassing of riverine carbon (Fnatural), which caused net CO2 efflux 
from the preindustrial ocean (Aumont et al., 2001). To quantify the anthropogenic air-sea CO2 flux, this Fnatural 
must be subtracted from our net flux, given that the models have been corrected toward pCO2 observations 
consistent with Fnet. Quantifying the global air-sea CO2 flux due to decomposition and outgassing of riverine 
carbon remains uncertain and is the topic of current research. Here, as in Gloege et al. (2022) and Bennington 
et  al.  (2022), we use an average of three estimates: Jacobson et  al.  (2007) (0.45  ±  0.18 PgC/yr), Resplandy 
et al. (2018) (0.78 ± 0.41 PgC/yr), and Lacroix et al. (2020) (0.23 Pg C/yr +/− an assumed 50% uncertainty). The 
combined globally integrated efflux due to riverine carbon is 0.49 ± 0.26 Pg C/yr, and thus we remove the efflux 

Global ocean biogeochemical model Data product Reference

CESM-ETHZ Doney et al. (2009)

FESCOM2-REcoM Gurses et al. (2021)

MICOM-HAMOCC (NorESM1-OCv1.2) Schwinger et al. (2016)

MOM6-COBALT (Princeton) Adcroft et al. (2019)

MPIOM-HAMOCC6 (MPI) Paulsen et al. (2017)

NEMO-PlankTOM5 Buitenhuis et al. (2013)

NEMO-PISCES (IPSL) Aumont et al. (2015)

NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019)

LDEO-HPD Gloege et al. (2022), this paper

JENA MLS Rödenbeck et al. (2022)

CSIR ML6 Gregor et al. (2019)

MPI SOMFFN Landschützer et al. (2014)

CMEMS FFNN Denvil-Sommer et al. (2019)

pCO2 Residual Bennington et al. (2022)

Table 1 
Global Ocean Biogeochemical Models, Data Products, and Their Corresponding References
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of 0.49 PgC/yr from the estimated annual air-sea CO2 fluxes calculated using the LDEO-HPD and other data 
products' pCO2 for comparison of the global flux timeseries.

2.2.  Box Model

The box model of McKinley et al. (2020) estimates the global-mean air-sea CO2 flux that occurs in response 
to the observed growth of atmospheric pCO2. It also has the option to include upper ocean heat content anom-
alies driven by the three most climatically impactful volcanic eruptions of the last 60 years: Agung in 1963, El 
Chichon in 1982, and Mt Pinatubo in 1991 (Crisp et al., 2022). Comparing air-sea CO2 fluxes estimated by the 
box model for 1960–2019 allows consideration of flux variability with and without large volcanic influences 
and puts LDEO-HPD into context with previous comparisons of the box model to observation-based products 
(McKinley et al., 2020).

3.  Results
3.1.  Analysis of Model-Data Misfit

Given the lack of surface ocean pCO2 observations prior to the 1980s, we must determine what correc-
tions (model-data misfits) to apply to the models prior to 1982. Extending the analysis of misfits begun by 
Gloege et al. (2022), we examine both the climatological misfits and the interannual variability of the misfits 
for 2000–2020. We choose only 2000–2020 to best capture interannual variability (Bennington et  al.,  2022), 
as chlorophyll-a observations do not start until 1998 and a climatology of chlorophyll-a must be used prior 
(Landschützer et al., 2014). Additionally, pCO2 coverage is better for the decades after 2000 (Bakker et al., 2016), 
so we have greater confidence in the estimated misfits.

The seasonal climatology and standard deviation of the model-data misfit for the Princeton GOBM is a represent-
ative example of the climatological misfit (Figure 1). Mean misfits are large in all seasons in the subpolar, equato-
rial, and Southern Ocean regions (Figure 1a). Interannual variability in the model-data misfit is quantified as the 
misfit standard deviation (Figure 1b). Year-to-year changes in misfits are significantly smaller in magnitude  than 
the mean, typically less than 5 μatm. Larger standard deviations can occur during the biologically productive 
seasons in the subpolar regions and Southern Ocean. The equatorial Pacific exhibits moderate interannual vari-
ability in all seasons. This comparison between the magnitude of the climatological and interannually variable 
misfit are similar across most of the ocean models (Gloege et al., 2022) (Figure S1 in Supporting Information S1).

3.2.  Climatological Misfits Dominate Improvements

To understand how much skill we could gain in our reconstruction if we used only a climatological correction, 
comparison to independent data is required. Data for such an assessment do not exist in sufficient number or 

Figure 1.  (a) Seasonal climatology (2000–2020) of model-data misfit in the Princeton model according to HPD. (b) Standard 
deviation of model-data misfit over 2000–2020 in the Princeton model, by season.



Geophysical Research Letters

BENNINGTON ET AL.

10.1029/2022GL098632

5 of 10

quality prior to the 1980s (Key et al., 2004); and begin to be more available only in the 1990s. To make the 
needed comparison, we create an alternative reconstruction, HPDClimatologyTest, that applies the above-discussed 
climatology of the model-data misfit for 2000–2020 to the entire reconstruction period (1959–2020). With 
HPDClimatologyTest, we can assess the impact of a climatological correction on reconstruction skill by comparison 
to several datasets.

Figure 2 compares the original uncorrected GOBMs (squares), and five observation-based products (crosses) 
to GLODAP and LDEO observations for 1990–2020 (red stars). The SOCAT database does not contain these 
GLODAP or LDEO observations, and thus, this is an independent assessment of reconstruction skill. The 
observation-based products all have substantially greater skill than the uncorrected GOBMs, indicated by the fact 
that they lie much closer to the red stars in the Taylor diagrams, which represents a correlation of 1 and the  prod-
uct and data having the same variability.

HPDClimatologyTest (solid blue diamond) lies almost as close to the observations (red star) as does LDEO-HPD. This 
leads to an important finding, which is that most of LDEO-HPD's skill is due to the correction of the GOBM's 
climatological mean state and seasonality (Fay & McKinley, 2021; Hauck et al., 2020; Mongwe et al., 2018) 
rather than their interannual variability. The additional skill achieved by adding interannual variability to the 
corrections (Figure 1b) is indicated by the difference between HPDClimatologyTest and LDEO-HPD, which is modest 
for GLODAP (Figure 2a) and slightly larger for LDEO (Figure 2b). HPDClimatologyTest has similar skill to other 
currently available observation-based products (Table 1), and the additional increment of skill from the interan-
nual correction brings LDEO-HPD closest to the independent observations (Gloege et al., 2022).

These findings support the use of the 2000–2020 climatological correction as the basis for adjusting the GOBMs 
for 1959–1981. For 1982–2020, interannually varying corrections are used (Section 2).

3.3.  CO2 Fluxes

Air-sea CO2 fluxes for 1959–2020 from LDEO-HPD, the eight GOBMs, previously published observation-based 
products, and HPDClimatologyTest demonstrate a long-term increasing trend punctuated by interannual variability 
(Figure 3a). There most significant feature of this variability is the slowed growth in uptake during the 1990s 
(Fay & McKinley,  2013; Hauck et  al.,  2020; Landschützer et  al.,  2015; Le Quéré et  al.,  2007; Lovenduski 
et al., 2007, 2008).

Figure 2.  Taylor diagrams (Taylor, 2001) depict the skill of each ocean model (squares), previous data products (Table 1, 
crosses), LDEO-Hybrid Physics Data product (blue cross), and HPDClimatologyTest. The ability to capture observed pCO2 
variability for 1990–2020 is evaluated against two global datasets (a) GLODAP and (b) LDEO. The red star indicates the 
standard deviation of each data set. Distance along the radius represents the ability to capture observed variability (standard 
deviation). The distance along the circumference depicts correlation with the observations, and gray inlaid circles show 
unbiased RMSE.
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In LDEO-HPD, interannual variability prior to 1982 is driven by only the GOBMs; only the mean flux and 
seasonality have been adjusted with climatological model-data misfits (Figure S2 in Supporting Information S1). 
The adjustment leads to a larger mean flux than most of the GOBMs (Figure 3a). From 1982 onward, the flux in 
LDEO-HPD has similar anomaly timing to HPDClimatologyTest, but these anomalies are of larger amplitude. These 
differences are due to the interannually varying adjustments that are possible only during the observed period. 
This comparison indicates that LDEO-HPD likely underestimates the amplitude of interannual anomalies prior 
to 1982, which is to be expected when there are no data to directly drive the reconstruction toward extremes 
(Rödenbeck et al., 2022).

A riverine efflux of carbon is applied to the products so as to estimate the anthropogenic-only global-mean flux, 
based on the average of several recent estimates (0.49 PgC/yr, Section 2.1). Riverine efflux is highly uncertain and 
has only been estimated for the long-term mean. Other possible choices of this value would shift the long-term 
global mean of LDEO-HPD, as well as the other products shown in Figure 3a, by ±0.2 PgC/yr (Section 2.1), but 
would not impact variability or trends.

Examining the spatial patterns of the mean air-sea carbon dioxide fluxes for each 20 year period in Figure 3b, 
we see a reduced Pacific equatorial efflux during 1980–1999 compared to the other periods, consistent with the 
occurrence of multiple strong El Niño events in this period (e.g., 1982–1983, 1997–1998). In the Northern extra-
tropics, the sink strengthening over time is evident.

Integrated flux anomalies at each latitude reveal the spatial distribution of interannual anomalies (Figure  4). 
Consistent with the global timeseries (Figure 3a), the dominant feature is the long-term growth (red to blue) of 
the ocean carbon sink at all latitudes.

Figure 3.  (a) Estimated air-sea CO2 fluxes for 1959–2020 (Pg C/yr): LDEO-Hybrid Physics Data product (LDEO-HPD) 
(blue), HPDClimatologyTest (cyan), unadjusted global ocean biogeochemical models (gray), Jena MLS (magenta), other 
observation-based products (green); comparisons shown in separate panels in Figure S1 in Supporting Information S1. 
HPDClimatologyTest is identical to LDEO-HPD prior to 1982. (b) Map of mean air-sea CO2 fluxes for 1960–1979, 1980–1999, 
and 2000–2020 according to LDEO-HPD (mol C/yr).
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The Pacific Ocean has large flux variability, with significant anoma-
lies occurring on interannual timescales within the equatorial region as a 
result of ENSO (McKinley et al., 2004, 2017; Rödenbeck et al., 2022). The 
Southern Ocean experiences significant carbon sink decadal variations 
(Gruber et al., 2019; Landschützer et al., 2015, 2016; Le Quéré et al., 2007; 
Lovenduski et  al.,  2007, 2008; McKinley et  al.,  2017; Ritter et  al.,  2017). 
Significant negative anomalies (greater uptake) occur in the 1980s to early 
1990s, with anomalies of greatest intensity in 1992–1995. After 1997, a 
strong positive anomaly (reduced uptake) emerges. From 2009 on, the anom-
aly is again strongly negative in the Southern Ocean. These decadal varia-
tions remain after detrending (Figure S4 in Supporting Information S1). In 
the Atlantic, latitudes north of 40°N have the most intense fluxes. This basin 
is narrower than the others, and thus has a lower integrated flux and lower 
amplitude interannual variability. The Indian Ocean exhibits significant vari-
ability south of 10°S according to the reconstruction; however the region is 
particularly sparse in observations to guide the reconstruction, which should 
increase its uncertainty (Gloege et al., 2021).

Increased uptake occurs in the Pacific and Southern Oceans immedi-
ately following the eruptions of Agung (March 1963), El Chichon (March 
1982) and Mt. Pinatubo (June 1991); also seen in the detrended fluxes 
(Figure S2 in Supporting Information S1). In the equatorial Pacific, the El 
Niño events that tend to follow these eruptions also drive significant flux 
anomalies (Eddebbar et  al.,  2019). After El Chichon and Pinatubo, slight 
negative anomalies also occur in the Southern Hemisphere Atlantic. The 
globally averaged box model of McKinley et al. (2020) parameterizes these 
eruptions as upper ocean heat content anomalies; and the estimated fluxes 
correlate highly with LDEO-HPD (Figure S3d in Supporting Information S1, 
r = 0.82). If the eruptions are neglected, the correlation decreases (r = 0.64). 
When both timeseries are detrended, the correlations remain significant only 
when the eruptions are included in the box model (with eruptions, r = 0.51, 
p < 0.05; without, r = −0.23, p = 0.13). Thus, both the box model and the 
spatial patterns of flux anomalies (Figure 4) indicates the potential for large 
volcanoes to impact interannual variability of the global ocean carbon sink 
since 1959. A more detailed study of this issue in the LDEO-HPD product 
will be presented elsewhere.

4.  Discussion and Conclusions
This work temporally extends the LDEO-HPD data product back in time to 
begin in 1959. For 1982–2020, model-data misfits are calculated for each 

model and each month as in Gloege et al. (2022). For 1959–1981, the monthly climatology of this correction 
for 2000–2020 is applied independently to each of eight GOBMs. Across all years, the final LDEO-HPD pCO2 
estimate is the average across the eight corrected models.

While it would be ideal to compare to observations prior to 1982, the TA and DIC measured by the high-quality 
GEOSECS experiment is subject to sufficient inaccuracies that they were excluded from the GLODAP synthesis 
products (Key et al., 2004). Thus, we compare to independent data from the modern era. With these comparisons, 
we find that the substantial improvement over uncorrected GOBMs is due primarily to the correction of the model 
mean and seasonality; that is, the climatological correction. This finding contrasts to a long standing percep-
tion that the primary weakness of GOBMs is their representation of interannual varability (Gruber et al., 2019; 
Landschützer et al., 2015; Le Quéré et al., 2007), and suggests a need for reassessment of the mechanistic drivers 
of errors in the models' mean state.

Figure 4.  Air-sea CO2 flux anomalies in four ocean basins (TgC/yr/°lat).
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There are significant regional biases in the mean and seasonality of many GOBMs (Fay & McKinley, 2021; 
Hauck et al., 2020; Mongwe et al., 2018) that this observation-based approach can reduce substantially, bringing 
the resulting estimates closer to observations (Figure 2). At the same time, this approach can preserve the GOBMs 
capability to represent interannual variability (Figure 3) that occurs in response to external forcing and internal 
ocean processes. Hauck et al. (2020) recently concluded that interannual variability is, in fact, well-represented 
by the GOBMs. By combining the strengths of models and observations with the LDEO-HPD approach, we have 
developed a robust approach to temporally extend this observation-based product back to 1959.

Another temporal extension on an observation-based product has recently been published, Jena MLS (Rödenbeck 
et al., 2022). Comparing JENA-MLS to LDEO-HPD, we find the two estimates to be significantly correlated 
(r = 0.93, p = 0; r = 0.66, p = 0 when detrended). The two reconstructions span the range of model flux esti-
mates prior to 1990s (Figure 3b), after which observations better constrain the products. Jena-MLS has a signif-
icantly larger estimated trend in the ocean carbon sink over the reconstructed period. However, as discussed by 
Rödenbeck et al. (2022) (their section A2), Jena-MLS in its current version overestimates the trend; thus, it likely 
underestimates the sink for the pre-observation decades.

LDEO-HPD indicates that the ocean carbon sink increased over the last 60 years, consistent with the nearly expo-
nential growth of atmospheric pCO2 (McKinley et al., 2020; Raupach et al., 2014; Ridge & McKinley, 2021). 
Long-term growth of the sink has been punctuated by year-to-year variability. Consistent with many earlier 
studies, we find that the equatorial Pacific and Southern Ocean have the largest integrated impact on variations 
of the sink (Hauck et al., 2020; Landschützer et al., 2016; Le Quéré et al., 2000; McKinley et al., 2004, 2017; 
Resplandy et  al.,  2015). In the equatorial Pacific, variability is associated with ENSO. The Southern Ocean 
exhibits strong decadal timescale variations for which both internal and externally forced mechanisms have been 
proposed (Gruber et al., 2019; Landschützer et al., 2015; McKinley et al., 2020). Better understanding the varia-
bility of ocean carbon uptake in the Southern Ocean and across the globe is an important task that can be facili-
tated by observation-based products such as LDEO-HPD.

Data Availability Statement
Open Data EN.4.2.2 data were obtained from https://www.metoffice.gov.uk/hadobs/en4/ and are ⓒ British Crown 
Copyright, Met Office (2022), provided under a Non-Commercial Government Licence: http://www.national-
archives.gov.uk/doc/non-commercial-government-licence/version/2/ Project code (Python) freely available on 
Github to prepare observational data for the machine learning algorithm, utilize XGBoost, and analyze the result-
ing reconstructed misfits: https://github.com/valbennington/LDEO_HPD_extension Final reconstructed CO2 
fluxes available on Zenodo: https://zenodo.org/record/6647613.
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